Abstract
The Equidistributional method is a popular technique for constructing numerical grids in engineering and scientific simulations. It is based on the principle of equidistribution, which requires evenly spaced grid points to reduce numerical errors. However, traditional Equidistributional methods can become inefficient and inaccurate for complex geometries and boundary conditions. In this paper, we present a new approach for solving the Equidistributional method's equations using physics-informed neural networks (PINN). PINN is a type of machine learning algorithm that has been shown to be effective for solving partial differential equations (PDEs). Our findings suggest that the use of PINN has the potential to significantly enhance the performance of the Equidistributional method for constructing 2D structured adapted numerical grids. TRANSLATE with x English Arabic Hebrew Polish Bulgarian Hindi Portuguese Catalan Hmong Daw Romanian Chinese Simplified Hungarian Russian Chinese Traditional Indonesian Slovak Czech Italian Slovenian Danish Japanese Spanish Dutch Klingon Swedish English Korean Thai Estonian Latvian Turkish Finnish Lithuanian Ukrainian French Malay Urdu German Maltese Vietnamese Greek Norwegian Welsh Haitian Creole Persian // TRANSLATE with COPY THE URL BELOW Back EMBED THE SNIPPET BELOW IN YOUR SITE Enable collaborative features and customize widget: Bing Webmaster Portal Back // Язык этой страницы: Английский Перевести на Русский Азербайджанский Албанский Амхарский Английский Арабский Армянский Африкаанс Бенгальский Бирманский Болгарский Валлийский Венгерский Вьетнамский Греческий Гуджарати Датский Иврит Индонезийский Исландский Испанский Итальянский Казахский Каннада Каталанский Китайский (традиционный) Китайский (упрощенный) Корейский Креольский (гаити) Курманджи Кхмерский Лаосский Латышский Литовский Малагасийский Малайский Малаялам Мальтийский Маори Маратхи Немецкий Непальский Нидерландский Норвежский Панджаби Персидский Польский Португальский Пушту Румынский Русский Самоанский Словацкий Словенский Тайский Тамильский Телугу Турецкий Украинский Урду Финский Французский Хинди Хорватский Чешский Шведский Эстонский Японский Всегда переводить Английский на РусскийPRO Никогда не переводить Английский Никогда не переводить jpcsip.kaznu.kz
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of problem in computer science and information technologies
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.