Abstract

We present a study addressing the effectiveness of a monolayer of hydrogen as the lithographic resist for controlled three-dimensional (3D) growth of nanostructures on the Si(100) surface. Nanoscale regions on the H-terminated Si(100) were defined by H-desorption lithography via the biased tip of a scanning tunneling microscope (STM) to create well-defined regions of surface “dangling bonds,” and the growth of 3D nanostructures within these regions was achieved using a simultaneous disilane deposition and STM H-desorption technique. We demonstrate that 3D growth is strongly confined within STM depassivated regions while unpatterned H:Si(100) regions are robust against adsorption of the precursor molecules.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.