Abstract

Abstract We expand current methods for calculating selection coefficients using path analysis and demonstrate how to analyse nonlinear selection. While this incorporation is a straightforward extension of current procedures, the rules for combining these traits to calculate selection coefficients can be complex. We demonstrate our method with an analysis of selection in an experimental population of Arabidopsis thaliana consisting of 289 individuals. Multiple regression analyses found positive directional selection and positive nonlinear selection only for inflorescence height. In contrast, the path analyses also revealed positive directional selection for number of rosette leaves and positive nonlinear selection for leaf number and time of inflorescence initiation. These changes in conclusions came about because indirect selection was converted into direct selection with the change in causal structure. Path analysis has great promise for improving our understanding of natural selection but must be used with caution since coefficient estimates depend on the assumed causal structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.