Abstract

In this study, the effects of ozonation and the addition of amino acids on rice starches were determined in terms of pasting properties using a rapid visco-analyzer. Results from viscosity analysis showed that 30-min ozone treatment on commercial rice starch exhibited the greatest swelling extent among the treatments and least retrogradation tendency. The control pure oxygen treated sample had the best cooking stability. The addition of lysine (6%) to 30-min ozonated commercial rice starch significantly reduced peak viscosity (PV), minimum viscosity (MV), and final viscosity (FV) by 918, 1024, and 1023 cP, respectively. Moreover, it decreased Ptime, resulting in the faster swelling upon heating and less rigid gel formation upon cooling. Furthermore, the presence of lysine in 30-min ozonated starch isolate (WSI) also significantly reduced PV, MV, FV, pasting time, and total setback (TSB) and produced starch gel with the best cooking stability and the least retrogradation tendency. Ozonated starch exhibited similar pasting properties to those from oxidized starches treated with low concentrations of chemical oxidizing agents. The combination of lysine with ozonation resulted in pasting properties similar to starches treated with high levels of chemical oxidizing agents. The ozonated starch could be used as a thickening agent, whereas ozonated starch with lysine might be an alternative for a highly chemically oxidized starch. Therefore, ozonation alone or the combination of ozonation and addition of lysine might be used to develop new starch ingredients with various functionalities without using typical chemical modifications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.