Abstract
Under-resourced speech recognizers may benefit from data in languages other than the target language. In this paper, we report how to boost the performance of an Afrikaans automatic speech recognition system by using already available Dutch data. We successfully exploit available multilingual resources through (1) posterior features, estimated by multilayer perceptrons (MLP) and (2) subspace Gaussian mixture models (SGMMs). Both the MLPs and the SGMMs can be trained on out-of-language data. We use three different acoustic modeling techniques, namely Tandem, Kullback–Leibler divergence based HMMs (KL-HMM) as well as SGMMs and show that the proposed multilingual systems yield 12% relative improvement compared to a conventional monolingual HMM/GMM system only trained on Afrikaans. We also show that KL-HMMs are extremely powerful for under-resourced languages: using only six minutes of Afrikaans data (in combination with out-of-language data), KL-HMM yields about 30% relative improvement compared to conventional maximum likelihood linear regression and maximum a posteriori based acoustic model adaptation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.