Abstract

This paper investigates employment of Subspace Gaussian Mixture Models (SGMMs) for acoustic model adaptation towards different accents for English speech recognition. The SGMMs comprise globally-shared and state-specific parameters which can efficiently be employed for various kinds of acoustic parameter tying. Research results indicate that well-defined sharing of acoustic model parameters in SGMMs can significantly outperform adapted systems based on conventional HMM/GMMs. Furthermore, SGMMs rapidly achieve target acoustic models with small amounts of data. Experiments performed with US and UK English versions of the Wall Street Journal (WSJ) corpora indicate that SGMMs lead to approximately 20% and 8% relative improvements with respect to speaker-independent and speaker-adapted acoustic models respectively over conventional HMM/GMMs. Finally, we demonstrate that SGMMs adapted only with 1.5 hours can reach performance of HMM/GMMs trained with 18 hours.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.