Abstract

Modelling the horizontal and vertical variation of wind speed is crucial for wind energy applications. A model frequently used for this purpose is part of the Wind Atlas Analysis and Application program (WAsP). Here, we modify the model in WAsP to account for local atmospheric stability parameters. Atmospheric stability effects are treated by using the impact of a temperature scale on the geostrophic drag law and the diabatic logarithmic wind profile. Using this approach, wind-direction dependent mean and standard deviation of a surface-layer temperature scale and a mean boundary-layer height scale can be obtained from either numerical weather prediction model output or observations to improve vertical extrapolations of Weibull wind speed distribution parameters. The modified atmospheric stability model is validated at six flat sites in northwestern Europe. The surface-layer temperature scale is available from sonic anemometer measurements at three of the sites. At all sites the temperature scale is also estimated from reanalysis data and from mesoscale model output. The modified model improves the aggregated estimations of power density distributions when extrapolating to nearby locations from 5.2 to 3%, when using the temperature scale derived from either observations or mesoscale/reanalysis output compared to the current model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call