Abstract

In this work we demonstrate a novel method of accelerating FPGA aging by configuring the FPGA to implement thousands of short circuits, resulting in high on-chip currents and temperatures. Three ring oscillators are placed across the chip and are used to characterize the operating frequency of the FPGA fabric. Over the course of several weeks of running the short circuits, with daily characterization of the FPGA performance, we measured a decrease in FPGA frequency greater than 5%. After aging, the FPGA part was repeatedly characterized during a two week idle period. Results indicated that the slowdown did not change, and the aging appeared to be permanent. In addition, we demonstrated that this aging could be induced in a non-uniform manner. In our experiments, the short circuits were all placed in the lower two-thirds of the chip, and one of the characterization ring oscillators was placed at the top of the chip, outside of the region with the short circuits. The fabric at this location exhibited a 1.36% slowdown, only one-quarter the slowdown measured in the targeted region.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call