Abstract
This study investigates early thermal aging in 9%Cr ferritic martensitic (FM) steel, which is caused by the formation of second phases during high temperature exposure. This study employs a recently developed nonlinear ultrasonic technique to explore the sensitivity of the nonlinearity parameter. Experimental results show that the nonlinearity parameter is sensitive to certain changes in material's properties such as thermal embrittlement and hardness changes; therefore, it can be used as an indicator of the thermal damage. The specimens investigated are heat treated for different holding times ranging from 200h to 3000h at 650°C. Nonlinear ultrasonic experiments are conducted for each specimen using a wedge transducer to generate and an air-coupled transducer to detect Raleigh surface waves. The amplitudes of the first and second order harmonics are measured at different propagation distances and these amplitudes are used to obtain the relative nonlinearity parameter for each specimen with a different holding time. The nonlinear ultrasonic results are compared with independent mechanical measurements and metallographic images. This research proposes the nonlinear ultrasonic technique as a nondestructive evaluation tool not only to detect thermal damage in early stages, and also to qualitatively assess the stage of thermal damage.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have