Abstract

Embryo cryopreservation is a common practice in reproductive biology and infertility treatments. Despite major improvements over years, the cryoprotectant solutions are still a major source of concern, mostly due to their chemical toxicity and suboptimal protection against cryoinjuries. In this work, we introduced natural honey as a non-permeating cryoprotectant to replace traditionally used sucrose in embryo vitrification. The proposed media were compared with conventional ones by evaluating vitrified/warmed mouse embryos based on their re-expansion, hatching rate and transcription pattern of selected genes involved in heat-shock response, apoptosis and oxidative stress. Despite the similar high re-expansion rate, molecular fingerprint of the cryopreservation is remarkably reduced when honey is used instead of sucrose. The biological response of the proposed media was explained from a fundamental point of view using antioxidant analysis, DSC and GC techniques. It was found that the proposed honey-based medium is less thermodynamically prone to ice formation, which along with its antioxidant capacity can control the production of oxygen radicals and minimize the stress-induced transcriptional response. Furthermore, this work tries to correlate the physico-chemical properties of the vitrification solutions with the cellular and molecular aspects of the cryopreservation and proposes the application of natural cryoprotectants in cryobiology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call