Abstract

Corneal blindness can be treated by keratoplasty but a lack of readily available corneal donor tissue for this procedure remains a challenge. Cryopreservation can facilitate the long-term storage of tissue but effective protocols for cryopreserving cornea have yet to be developed. Mathematical modelling can guide protocol design, but previously used models are not comprehensive. A comprehensive model should describe the tissue’s shrink−swell response and the cryoprotectant concentration throughout the tissue during cryoprotectant loading. Such a model exists for articular cartilage based on a biomechanical triphasic approach. We explored the applicability of this model for describing cryoprotectant permeation in porcine corneas by fitting it to experimental data for the permeation of dimethyl sulfoxide into porcine corneoscleral discs. The model provided as good of a fit for corneoscleral discs data as it did for articular cartilage data, presenting promise for its use in the design of cryopreservation protocols for corneas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call