Abstract

AbstractAccuracy of depth of burn (an indicator of consumption) in peatland soils using prefire and postfire airborne light detection and ranging (lidar) data is determined within a wetland‐upland forest environment near Fort McMurray, Alberta, Canada. The relationship between peat soil burn depth and an “active” normalized burn ratio (ANBR) is also examined beneath partially and fully burned forest and understory canopies using state‐of‐the‐art active reflectance from a multispectral lidar compared with normalized burn ratio (NBR) derived from Landsat 7 ETM+. We find significant correspondence between depth of burn, lidar‐derived ANBR, and difference NBR (dNBR) from Landsat. However, low‐resolution optical imagery excludes peatland burn losses in transition zones, which are highly sensitive to peat loss via combustion. The findings presented here illustrate the utility of this new remote sensing technology for expanding an area of research where it has previously been challenging to spatially detect and quantify such wildfire burn losses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call