Abstract

AbstractWe present data and analysis of a set of balloon‐borne sounding profiles, which includes co‐located O3, CO, CH4, and particles, over the northern Tibetan Plateau during an Asian summer monsoon (ASM) season. These novel measurements shed light on the ASM transport behavior near the northern edge of the anticyclone. Joint analyses of these species with the temperature and wind profiles and supported by back trajectory modeling identify three distinct transport processes that dominate the vertical chemical structure in the middle troposphere, upper troposphere (UT), and the tropopause region. The correlated changes in profile structures in the middle troposphere highlight the influence of the strong westerly jet. Elevated constituent concentrations in the UT identify the main level of convective transport at the upstream source regions. Observed higher altitude maxima for CH4 characterize the airmasses' continued ascent following convection. These data complement constituent observations from other parts of the ASM anticyclone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.