Abstract
Environmental factors can regulate gene expression without changing the genetic code itself, a process called epigenetics. One currently active area of genetic and epigenetic research is into the regulation of a tumor-inducing gene called Mylocytomatosis, or MYC, which is involved in many types of cancer. As genetic discoveries, such as the regulation of MYC, are generating more interest from the medical community and the public, creating effective visuals is of increasing importance. However, research studies on the general public’s understanding of genetics have demonstrated a poor grasp of genetic concepts - a finding that also appears in similar studies of undergraduate genetics students, medical students, and practicing physicians. Fortunately, visual learning studies and multimedia design principles have established methods for improving comprehension of biomedical topics. Animation, in particular, has the benefit of pairing narration and dynamic visuals, which, when used together, benefit long-term memory more than the use of static images. Here, we employ visual design strategies (including content mapping, storyboarding, and user studies), multimedia learning principles, and 3D molecular animation to successfully improve the understanding of a complex genetic topic to an audience with a wide range of background knowledge. This study presents the first and most accurate animation of the complex interactions of transcription initiation and elongation on a molecular scale. The animation includes the initiation complex, the transcription elongation complex, MYC, Pol II, and the assortment of transcription factors that assist in modulating the rate of elongation of Pol II. The resulting product is a three-minute animation which uses audio, visuals, and a deep understanding of multimedia principles to significantly increase individuals’ prior knowledge of a complex topic in molecular genetics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.