Abstract
Rapid advances in single-cell RNA sequencing (scRNA-seq) have made it possible to characterize cell states at a high resolution view for large scale library. scRNA-seq data contains a great deal of biological information, which can be mainly used to discover cell subtypes and track cell development. However, traditional methods face many challenges in addressing scRNA-seq data with high dimensions and high sparsity. For better analysis of scRNA-seq data, we propose a new framework called MSVGAE based on variational graph auto-encoder and graph attention networks. Specifically, we introduce multiple encoders to learn features at different scales and control for uninformative features. Moreover, different noises are added to encoders to promote the propagation of graph structural information and distribution uncertainty. Therefore, some complex posterior distributions can be captured by our model. MSVGAE maps scRNA-seq data with high dimensions and high noise into the low-dimensional latent space, which is beneficial for downstream tasks. In particular, MSVGAE can handle extremely sparse data. Before the experiment, we create 24 simulated datasets to simulate various biological scenarios and collect 8 real-world datasets. The experimental results of clustering, visualization and marker genes analysis indicate that MSVGAE model has excellent accuracy and robustness in analyzing scRNA-seq data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE/ACM transactions on computational biology and bioinformatics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.