Abstract

This work is concerned with the use of mobile sensors to approximate and replace the full state feedback controller by static output feedback controllers for a class of PDEs. Assuming the feedback operator associated with the full-state feedback controller admits a kernel representation, the proposed optimization aims to approximate the inner product of the kernel and the full state by a finite sum of weighted scalar outputs provided by the mobile sensors. When the full state feedback operator is time-dependent thus rendering its associated kernel time-varying, the approximation results in moving sensors with time-varying static gains. To calculate the velocity of the mobile sensors within the spatial domain the time-varying kernel is set equal to the sensor density and thus the solution to an associated advection PDE reveals the velocity field of the sensor network. To obtain the speed of the finite number of sensors, a domain decomposition based on a modification of the Centroidal Voronoi Tessellations (µ-CVT) is used to decompose the kernel into a finite number of cells, each of which contains a single sensor. A subsequent application of the µ-CVT on the velocity field provides the individual sensor speeds. The nature of this µ-CVT ensures collision avoidance by the very structure of the kernel decomposition into non-intersecting cells. Numerical simulations are provided to highlight the proposed sensor guidance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call