Abstract

BackgroundThe European Kingfisher (Alcedo atthis) is a small plunge-diving bird, today considered a species of conservation concern in Europe given its rapid population decline observed across the continent. We implemented a pilot study aimed at providing first data allowing to: (1) assess home range features of the European Kingfisher for populations with unevenly distributed feeding habitats; (2) define conservation implications for habitats exploited by such populations; and (3) evaluate possibilities for developing GPS tracking schemes dedicated to home range studies for this species that could be possibly applied to other small plunge-diving birds.MethodsIn 2018 and 2019, we equipped 16 breeding European Kingfishers sampled within the marshes of the Gironde Estuary (France), with miniaturized and waterproof GPS archival tags deployed with leg-loop harnesses (total equipment mass = 1.4 g; average bird mass = 40.18 ± 1.12 g).ResultsOn average, we collected 35.31 ± 6.66 locations usable for analyses, without a significant effect on bird body condition (n = 13 tags retrieved). Data analyses highlighted rather limited home ranges exploited by birds (average = 2.50 ± 0.55 ha), composed on average by 2.78 ± 0.40 location nuclei. Our results also underscore: (1) a rather important home range fragmentation index (0.36 ± 0.08); and (2) the use by birds of different types of small wetlands (wet ditches, small ponds or small waterholes), often exploited in addition to habitats encompassing nest locations.ConclusionsOur study reveals interesting GPS tracking possibilities for small plunge-diving birds such as the European Kingfisher. For this species, today classified as vulnerable in Europe, our results underline the importance of developing conservation and ecological restoration policies for wetland networks that would integrate small wetlands particularly sensitive to global change.

Highlights

  • The European Kingfisher (Alcedo atthis) is a small plunge-diving bird, today considered a species of conservation concern in Europe given its rapid population decline observed across the continent

  • Given the importance in monitoring home range features of the European Kingfisher for population conservation, and the interest in documenting potential effects of radio or GPS tracking techniques in the framework of research conservation schemes dedicated to small plunge-diving birds, we implemented a pilot study aimed at providing first data allowing to: (1) assess home range features of the European Kingfisher populations with unevenly distributed feeding habitats; (2) define conservation implications for habitats exploited by such populations; and (3) evaluate opportunities for developing GPS tracking schemes dedicated to home range studies for this species of conservation concern that could be applied to other small plunge-diving species

  • Future studies dedicated to home range features of this species of conservation concern, using tags deployed with legloop harnesses, is possible, but closer examination should be considered if birds would have to be monitored over a period exceeding three weeks

Read more

Summary

Introduction

The European Kingfisher (Alcedo atthis) is a small plunge-diving bird, today considered a species of conservation concern in Europe given its rapid population decline observed across the continent. Given the declining and alarming population trend of the European Kingfisher in Europe and the possible relationship between this decline and the management or perturbations of the habitats exploited by the species, studies are needed to characterize its home range features. To examine the possible overlap of bird territories along the Meuse River (Belgium), Hürner and Libois (2005) radio-tracked two European Kingfisher males during the breeding period. Since this limited study, no work has characterized home range features of the species. Such data are important, for populations breeding within sites where access to trophic resources may be unevenly distributed and for which small water bodies, sensitive to global change, may be relevant to population conservation

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call