Abstract
The Q-matrix, which specifies the relationship between items and attributes, is a crucial component of cognitive diagnostic models (CDMs). A precisely specified Q-matrix allows for valid cognitive diagnostic assessments. In practice, a Q-matrix is usually developed by domain experts, and noted as being subjective and potentially containing misspecifications which can decrease the classification accuracy of examinees. To overcome this, some promising validation methods have been proposed, such as the general discrimination index (GDI) method and the Hull method. In this article, we propose four new methods for Q-matrix validation based on random forest and feed-forward neural network techniques. Proportion of variance accounted for (PVAF) and coefficient of determination (i.e., the McFadden pseudo-R2) are used as input features for developing the machine learning models. Two simulation studies are carried out to examine the feasibility of the proposed methods. Finally, a sub-dataset of the PISA 2000 reading assessment is analyzed as illustration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.