Abstract

The Q-matrix identifies the subset of attributes measured by each item in the cognitive diagnosis modelling framework. Usually constructed by domain experts, the Q-matrix might contain some misspecifications, disrupting classification accuracy. Empirical Q-matrix validation methods such as the general discrimination index (GDI) and Wald have shown promising results in addressing this problem. However, a cut-off point is used in both methods, which might be suboptimal. To address this limitation, the Hull method is proposed and evaluated in the present study. This method aims to find the optimal balance between fit and parsimony, and it is flexible enough to be used either with a measure of item discrimination (the proportion of variance accounted for, PVAF) or a coefficient of determination (pseudo-R2 ). Results from a simulation study showed that the Hull method consistently showed the best performance and shortest computation time, especially when used with the PVAF. The Wald method also performed very well overall, while the GDI method obtained poor results when the number of attributes was high. The absence of a cut-off point provides greater flexibility to the Hull method, and it places it as a comprehensive solution to the Q-matrix specification problem in applied settings. This proposal is illustrated using real data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.