Abstract
ObjectiveThis study aimed to develop and validate a machine learning-based short measure to assess 5 functions (the ML-5F) (activities of daily living [ADL], balance, upper extremity [UE] and lower extremity [LE] motor function, and mobility) in patients with stroke. DesignSecondary data from a previous study. A follow-up study assessed patients with stroke using the Barthel Index (BI), Postural Assessment Scale for Stroke (PASS), and Stroke Rehabilitation Assessment of Movement (STREAM) at hospital admission and discharge. SettingA rehabilitation unit in a medical center. ParticipantsPatients (N=307) with stroke. InterventionsNot applicable. Main Outcome MeasuresThe BI, PASS, and STREAM. ResultsA machine learning algorithm, Extreme Gradient Boosting, was used to select 15 items from the BI, PASS, and STREAM, and transformed the raw scores of the selected items into the scores of the ML-5F. The ML-5F demonstrated good concurrent validity (Pearson's r, 0.88-0.98) and responsiveness (standardized response mean, 0.28-1.01). ConclusionsThe ML-5F comprises only 15 items but demonstrates sufficient concurrent validity and responsiveness to assess ADL, balance, UE and LE functions, and mobility in patients with stroke. The ML-5F shows great potential as an efficient outcome measure in clinical settings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.