Abstract

To develop a model to identify risk factors and predictors of acute pancreatitis in children with pancreaticobiliary maljunction (PBM). We screened consecutive PBM patients treated at two centers between January, 2015 and July, 2021. For machine learning, the cohort was divided randomly at a 6:4 ratio to a training dataset and a validation dataset. Three parallel models were developed using logistic regression (LR), a support vector machine (SVM), and extreme gradient boosting (XGBoost), respectively. Model performance was judged primarily based on the area under the receiver operating curves (AUC). A total of 99 patients were included in the analysis, 17 of whom suffered acute pancreatitis and 82 did not. The XGBoost (AUC = 0.814) and SVM (AUC = 0.813) models produced similar performance in the validation dataset; both outperformed the LR model (AUC = 0.805). Based on the SHapley Additive exPlanation values, the most important variable in both the XGBoost and SVM models were age, protein plugs, and white blood cell count. Machine learning models, especially XGBoost and SVM, could be used to predict acute pancreatitis in children with PBM. The most important contributing factor to the models were age, protein plugs, and white blood cell count.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.