Abstract
We propose to compare population means and variances under a semiparametric density ratio model. The proposed method is easy to implement by employing logistic regression procedures in many statistical software, and it often works very well when data are not normal. In this paper, we construct semiparametric estimators of the differences of two population means and variances, and derive their asymptotic distributions. We prove that the proposed semiparametric estimators are asymptotically more efficient than the corresponding non parametric ones. In addition, a simulation study and the analysis of two real data sets are presented. Finally, a short discussion is provided.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have