Abstract

Random packs of spheres have been used to model heterogeneous and porous material morphologies during simulations of physical processes such as burning of coal char, convective burning in porous explosives, and regression of solid rocket propellant. Sphere packs have also been used to predict thermo-mechanical properties, permeability, packing density, and dissolution characteristics of various materials. In this work, we have extended the Lubachevsky-Stillinger (LS) sphere packing algorithm to create polydisperse packs of non-spherical shapes for modeling heterogeneity in complex energetic materials such as HMX and pressed gun propellants. In the method, we represent the various particle shapes using level sets. The LS framework requires estimates of inter-particle collision times, and we predict these times by numerically solving a minimization problem. We have obtained results for dense random packs of various convex shapes such as cylinders, spherocylinders, and polyhedra, and we show results with these various particles packed together in a single pack to high packing fraction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.