Abstract

Learning (memorizing) mineral formulae and analytical techniques and procedures can represent two of the more odious tasks facing students in Mineralogy courses. Yet, familiarity with mineral formulae facilitates the assimilation of many concepts dealing with mineral structures, coordination, and element substitutions, in addition to setting a context for geochemical problems encountered in other courses. Likewise, familiarity with a range of analytical techniques and equipment can open the door for valuable undergraduate research experiences, and lead to success in obtaining increasingly analytical entry-level jobs in geoscience-related fields. In-class discussion and flexible assessment schedules substantially improved retention of mineral formulae from one semester to the next, as opposed to other methods of “learning.” Students are given the opportunity to “take control of” their course grade by having the option of retaking mineral formulae quizzes, at the same time increasing short-term utility and long-term retention. In-class discussions and concept mapping of formulae were used to help students develop a context for the use and meaning of formulae. An inquiry-based approach to the learning of analytical techniques and equipment allows students to experiment with various aspects of the analysis of minerals. Precision and accuracy, sample preparation, pitfalls and shortcuts, in addition to the most efficient way of implementing the equipment are best discovered by trial-and-error. Students are assigned a piece of equipment or analytical method and must develop a Standard Operating Procedure (SOP) based on their understanding of the equipment. Presentation of their SOP facilitates discussion on similarities and differences, while introducing the entire class to a wide range of procedures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.