Abstract
ABSTRACT Residents’ trajectory data denote their instantaneous locations along their movements. Mobility research that applies trajectory mining techniques to identify the transportation modes of these movements can inform urban transportation planning. Herein, we propose a five-step approach with information entropy and a multi-layer neural network to identify transportation modes from trajectory data. First, this approach extracts the motion features at each time-stamped location based on foundation geospatial data and spatiotemporal trajectory data, including the speed, acceleration, change of direction, rate of change in direction, and distance from each basic transportation facility. The second step uses information entropy to identify the features that play key roles in identifying transportation modes. The third step weighs each attribute in the feature vector consisting of the selected features and normalizes it to prepare it as input data. The fourth step constructs, trains, and tests a multi-layer neural network with seven-fold cross-validation. The final step includes a post-processing method to optimize the identification result. We use F-measure metric to evaluate the performance. Experimental results on a real trajectory dataset show that the proposed approach can identify the transportation mode at each time-stamped location and outperforms existing transportation-mode identification methods in terms of accuracy and stability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Geographical Information Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.