Abstract
Conducting a detailed assessment of solar irradiation at the pedestrian scale on all ground surfaces of a city can assist in identifying cooler routes for pedestrian navigation or preparing the city for potential overheating issues by pinpointing overexposed areas. This article proposes an effective method for conducting such an assessment within a GIS with metric resolution across territories exceeding 100 km². It is based on standard datasets and implements an efficient strategy that relies on separation of variables, domain decomposition, and dimensionality reduction. This strategy involves creating a synthetic representation of the facades of the surrounding buildings (spatial dimension) which accelerates the calculation of shadows based on the sun’s position (temporal dimension). To demonstrate the effectiveness of this method, we applied it to a French city, generating fourteen maps illustrating the solar irradiation of the area for different months of the year or for two given dates with specific weather conditions. The proposed strategy, along with the synthetic representation of building facades, opens up a wide range of possibilities. In addition to synthesizing machine learning labeled datasets, we can also consider calculating solar irradiation with time steps of a few minutes to update weather conditions throughout a journey.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Geographical Information Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.