Abstract
The advent of DNA microarray technology has supplied a large volume of data to many fields like machine learning and data mining. Intelligent support is essential for managing and interpreting this great amount of information. One of the well-known constraints specifically related to microarray data is the large number of genes in comparison with the small number of available experiments. In this context, the ability of design methods capable of overcoming current limitations of state-of-the-art algorithms is crucial to the development of successful applications. In this paper we demonstrate how a supervised fuzzy pattern algorithm can be used to perform DNA microarray data reduction over real data. The benefits of our method can be employed to find biologically significant insights relating to meaningful genes in order to improve previous successful techniques. Experimental results on acute myeloid leukemia diagnosis show the effectiveness of the proposed approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.