Abstract

AbstractIn recent years, machine learning and data mining fields have found a successful application area in the field of DNA microarray technology. Gene expression profiles are composed of thousands of genes at the same time, representing complex relationships between them. One of the well-known constraints specifically related to microarray data is the large number of genes in comparison with the small number of available experiments or cases. In this context, the ability to identify an accurate gene selection strategy is crucial to reduce the generalization error (false positives) of state-of-the-art classification algorithms. This paper presents a reduction algorithm based on the notion of fuzzy gene expression, where similar (co-expressed) genes belonging to different patients are selected in order to construct a supervised prototype-based retrieval model. This technique is employed to implement the retrieval step in our new gene-CBR system. The proposed method is illustrated with the analysis of microarray data belonging to bone marrow cases from 43 adult patients with cancer plus a group of three cases corresponding to healthy persons.KeywordsMembership FunctionCase Base ReasoningMicroarray Data AnalysisSoft Computing TechniqueLinguistic LabelThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.