Abstract

Abstract The results from an investigation into the physics of how fluid curtains can be applied to improve the aerodynamic performance of conventional turbomachinery shaft and rotor seals are described in this paper. Computational fluid dynamics and testing on two experimental facilities are used in the study. In the first part of the work, computational fluid dynamics simulations validated against experimental test data demonstrate the fundamental mechanism by which the presence of the curtain can act to reduce leakage flow through conventional seals. These results are consolidated into a single performance carpet map, showing how the leakage reduction performance and the curtain supply pressure needed to achieve it vary with changes in values of key geometrical parameters. In the second part of the work the effect of swirl in the seal inlet flow, as is often encountered in turbomachinery applications, on the performance of the fluid curtain is investigated experimentally. Test results show that if the swirl momentum in the inlet flow is greater than the momentum of the curtain flow, the performance benefit from applying the curtain is greatly diminished. Overall, the results provide some high-level design rules for applying fluid curtains to enhance turbomachinery sealing performance for the general type of leakage path geometry (cylindrical channel, 45-degree jet angle, curtain upstream of a conventional seal) and working fluid type and conditions (air, ambient temperature, subsonic leakage channel flow), used in the study.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call