Abstract

To expand the unchartered materials space of lead‐free ferroelectrics for smart digital technologies, tuning their compositional complexity via multicomponent alloying allows access to enhanced polar properties. The role of isovalent A‐site in binary potassium niobate alloys, (K,A)NbO3 using first‐principles calculations is investigated. Specifically, various alloy compositions of (K,A)NbO3 are considered and their mixing thermodynamics and associated polar properties are examined. To establish structure‐property design rules for high‐performance ferroelectrics, the sure independence screening sparsifying operator (SISSO) method is employed to extract key features to explain the A‐site driven polarization in (K,A)NbO3. Using a new metric of agreement via feature‐assisted regression and classification, the SISSO model is further extended to predict A‐site driven polarization in multicomponent systems as a function of alloy composition, reducing the prediction errors to less than 1%. With the machine learning model outlined in this work, a polarity‐composition map is established to aid the development of new multicomponent lead‐free polar oxides which can offer up to 25% boosting in A‐site driven polarization and achieving more than 150% of the total polarization in pristine KNbO3. This study offers a design‐based rational route to develop lead‐free multicomponent ferroelectric oxides for niche information technologies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.