Abstract

Extensive spectroscopic characterization of high k materials under consideration for replacing Si oxide as the gate dielectric in Si-based microelectronic devices has been accomplished. Band offset energies of Zr silicates with respect to Si have been determined as a function of silicate alloy composition by combining near-edge x-ray absorption fine structure spectroscopy, vacuum-ultraviolet spectroscopic ellipsometry, x-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy, and ab initio calculations on cluster models. These studies provide insight that applies to both transition metal- and rare earth-based dielectrics, including binary oxides and silicate and aluminate alloys. Results have been used to estimate the electronic conduction through Hf silicate films as a function of alloy composition. Thermally induced chemical phase separation in Zr silicate films has been characterized using XPS, Fourier transform infrared spectroscopy, x-ray diffraction, high-resolution transmission electron microscopy, and extended x-ray absorption fine structure spectroscopy. Our results indicate separation into a noncrystalline, Si-rich phase and either nano- or microcrystalline ZrO2, depending on the original film stoichiometry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.