Abstract
Declines of species in fragmented landscapes can potentially be reversed either by restoring connectivity or restoring local habitat quality. Models fitted to snapshot occupancy data can be used to predict the effectiveness of these actions. However, such inferences can be misleading if the reliability of the habitat and landscape metrics used is unknown. The only way to unambiguously resolve the roles of habitat quality and metapopulation dynamics is to conduct experimental reintroductions to unoccupied patches so that habitat quality can be measured directly from data on vital rates. We, therefore, conducted a 15-year study that involved reintroducing a threatened New Zealand bird to unoccupied forest fragments to obtain reliable data on their habitat quality and reassess initial inferences made by modeling occupancy against habitat and landscape metrics. Although reproductive rates were similar among fragments, subtle differences in adult survival rates resulted in λ (finite rate of increase) estimations of <0.9 for 9 of the 12 fragments that were previously unoccupied. This was the case for only 1 of 14 naturally occupied fragments. This variation in λ largely explained the original occupancy pattern, reversing our original conclusion from occupancy modeling that this occupancy pattern was isolation driven and suggesting that it would be detrimental to increase connectivity without improving local habitat quality. These results illustrate that inferences from snapshot occupancy should be treated with caution and subjected to testing through experimental reintroductions in selected model systems.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have