Abstract
AbstractThe authors suggest an approach to analyze the effects of small-scale afforestation on the surrounding climate of a large heterogenic area. While simple statistics have difficulty identifying the effect, here a well-known eigenvector technique is used to overcome several specific challenges that result from a limited research region, complex topography, and multiple atmospheric circulation patterns. This approach is applied to investigate the influence of the isolated Yatir forest, at the north edge of Israel’s Negev Desert. It was found that this forest does influence the daily climate, primarily seen in the main pattern of the empirical orthogonal function (EOF) of temperature and humidity. The EOF explains 93% and 80%, respectively, of the total variance in the data. Although the Yatir forest is small, it is significant in regulating the climate in the nearby surroundings, as it is located in a sharp transition area toward an arid climate. The results are presented as maps of correlation and regression between the normalized principal component time series of each pattern as well as other time series of the raw data and spatially interpolated data stations. Analysis of short-term campaign measurements around the Yatir forest supports the EOF results, and shows the forest’s influence to the south, mainly during nighttime when the forest becomes cooler than its surroundings. Overall, results suggest that in areas of transition to semiarid climates, forests regulate the surrounding surface air temperature and humidity fields. Wind analysis based on a complex EOF technique reveals the pattern of the daily cycle of surface wind over the region.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of Applied Meteorology and Climatology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.