Abstract
Thermal comfort is an important factor for the design of buildings. Although it has been well recognized that many physiological parameters are linked to the state of thermal comfort or discomfort of humans, how to use physiological signal to judge the state of thermal comfort has not been well studied. In this paper, the feasibility of continuously determining feelings of personal thermal comfort was discussed by using electroencephalogram (EEG) signals in private space. In the study, 22 subjects were exposed to thermally comfortable and uncomfortably hot environments, and their EEG signals were recorded. Spectral power features of the EEG signals were extracted, and an ensemble learning method using linear discriminant analysis or support vector machine as a sub-classifier was used to build the discriminant model. The results show that an average discriminate accuracy of 87.9% can be obtained within a detection window of 60seconds. This study indicates that it is feasible to distinguish whether a person feels comfortable or too hot in their private space by multi-channel EEG signals without interruption and suggests possibility for further applications in neuroergonomics.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.