Abstract
In the context of climate change and human activities, the global sea level is facing a rising trend, which poses serious challenges to the ecological environment of coastal areas. In this study, we selected the monthly mean sea level (MSL) time series of 9 stations in the coastal areas of China as the research object. First, we analyzed the spatiotemporal distribution characteristics of the monthly MSL in the coastal areas of China. Secondly, we analyzed the ability of ensemble empirical mode decomposition (EEMD) to decompose the monthly MSL series. Finally, we choose three machine learning models, namely Back Propagation (BP), K-Nearest Neighbor (KNN), and Long Short-Term Memory (LSTM) neural network models to compare model prediction effect between single machine learning models with machine learning models combined with EEMD. The results show that except for the YANTAI (YT) station, which showed an insignificant downward trend, the monthly MSL of other stations showed an upward trend, indicating that the coastal areas of China are facing the risk of sea level rise. EEMD can effectively reduce the complexity of the original monthly MSL time series, and different intrinsic mode functions (IMFs) reflect changes in monthly MSL at different frequencies. Comparing the single machine learning model and the machine learning model combined with EEMD, it is found that the simulation effect of the machine learning model combined with EEMD is better than that of the single model. The model with the best prediction effect on monthly MSL in the coastal areas of China is LSTM-EEMD, followed by KNN-EEMD. This study provides an important reference for systematically understanding sea level changes and selecting an appropriate monthly MSL prediction model in the coastal areas of China.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.