Abstract
With rapid advancements in in-vehicle network (IVN) technology, the demand for multiple advanced functions and networking in electric vehicles (EVs) has recently increased. To enable various intelligent functions, the electrical system of existing vehicles incorporates a controller area network (CAN) bus system that enables communication among electrical control units (ECUs). In practice, traditional network-based intrusion detection systems (NIDSs) cannot easily identify threats to the CAN bus system. Therefore, it is necessary to develop a new type of NIDS—namely, on-the-move Intrusion Detection System (OMIDS)—to categorise these threats. Accordingly, this paper proposes an intrusion detection model for IVNs, based on the VGG16 classifier deep learning model, to learn attack behaviour characteristics and classify threats. The experimental dataset was provided by the Hacking and Countermeasure Research Lab (HCRL) to validate classification performance for denial of service (DoS), fuzzy attacks, spoofing gear, and RPM in vehicle communications. The proposed classifier’s performance was compared with that of the XBoost ensemble learning scheme to identify threats from in-vehicle networks. In particular, the test cases can detect anomalies in terms of accuracy, precision, recall, and F1-score to ensure detection accuracy and identify false alarm threats. The experimental results show that the classification accuracy of the dataset for HCRL Car-Hacking by the VGG16 and XBoost classifiers (n = 50) reached 97.8241% and 99.9995% for the 5-subcategory classification results on the testing data, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.