Abstract

The modern car is increasingly connected. That connection is magnified by the presence of a large number of electronic control units (ECUs). The communication between the ECUs of a modern car is assured by the Controller Area Network (CAN) bus system. Despite its importance, the CAN bus system is bereft of security mechanisms making it vulnerable to numerous security attacks. When an attacker succeeds in compromising the ECUs, they can take control and stop the engine, disable the brakes, turn the lights on/off, etc. An intrusion detection system (IDS) can be deployed as an appropriate security measure to detect the malicious network traffic in the CAN bus system. In this paper, we propose a Convolutional Neural Network (CNN)-based network attacks IDS for protecting the CAN bus system. For efficiency reasons, we generated our own datasets from three car models. Our experiment results demonstrate that our classifier is efficient for detecting the CAN bus system attacks, and it performs with a high accuracy of 99.99% and a detection rate of 0.99.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.