Abstract

Urethral Pressure Profilometry (UPP) is a tool in the diagnosis of urinary incontinence. The pressure profile along the urethra is measured by a special catheter in order to assess the contraction strength of the sphincter muscle. However, the diagnostic value of pressure profilometry is limited. We seek to increase the diagnostic value by providing a detailed spatial reconstruction of the pressure profile on the outside surface of the urethra. We use deconvolution in order to solve the inverse problem of determining the pressure distribution on the outside of a tube from measured data on the inside. Therefore, we propose a parametric Point-Spread-Function (PSF) and optimize its parameters using a Finite-Element (FE) model. Simulation results verifying accuracy and robustness of this method conclude this work.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.