Abstract

AbstractDiscrete high‐density plasma structures in the Earth's ionosphere that convect across the polar cap from the dayside to nightside are known as polar cap patches. This high‐latitude phenomenon can interfere and disrupt satellite and high‐frequency (HF) communications when the associated sharp electron density gradients are encountered, and therefore, accurate modeling and forecasting of such events would be greatly beneficial. In this study, we have utilized the assimilative Global Positioning System Ionospheric Inversion (GPSII) method to reconstruct the high‐latitude ionosphere utilizing data from Global Navigation Satellite System (GNSS) receivers, vertical ionosondes, the Resolute Bay Incoherent Scatter Radar (RISR‐N), in situ satellite data, and Super Dual Auroral Radar Network (SuperDARN) radars. The novel method of assimilating RISR‐N and SuperDARN ground scatter measurements helps to increase the limited number of observations at high latitudes. The reconstructed polar cap patches are shown to correspond with ground‐ and spaced‐based observations, illustrating the ability of utilizing GPSII to study the complex high‐latitude region.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call