Abstract
Predictive analytics can be used to anticipate the risks associated with some patients, and prediction models can be employed to alert physicians and allow timely proactive interventions. Recently, health care providers have been using different types of tools with prediction capabilities. Sepsis is one of the leading causes of in-hospital death in the United States and worldwide. In this study, the authors used a large medical dataset to develop and present a model that predicts in-hospital mortality among Sepsis patients. The predictive model was developed using a dataset of more than one million records of hospitalized patients. The independent predictors of in-hospital mortality were identified using the chi-square automatic interaction detector. The authors found that adding hospital attributes to the predictive model increased the accuracy from 82.08% to 85.3% and the area under the curve from 0.69 to 0.84, which is favorable compared to using only patients' attributes. The authors discuss the practical and research contributions of using a predictive model that incorporates both patient and hospital attributes in identifying high-risk patients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Healthcare Information Systems and Informatics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.