Abstract

The objective of the paper is a contribution to data mining within the framework of the observational calculus, through introducing ǵeneralized quantifiers related to copulas. Fitting copulas to multidimensional data is an increasingly important method for analyzing dependencies, and the proposed quantifiers of observational calculus assess the results of estimating the structure of joint distributions of continuous variables by means of hierarchical Archimedean copulas. To this end, the existing theory of hierarchical Archimedean copulas has been slightly extended in the paper: It has been proven that sufficient conditions for the function defining a hierarchical Archimedean copula to be indeed a copula, which have so far been rigorously established only for the special case of fully nested Archimedean copulas, hold in general. These conditions allow us to define three new generalized quantifiers, which are then thoroughly validated on four benchmark data sets and one data set from a real-world application. The paper concludes by comparing the proposed quantifiers to a more traditional approach—maximum weight spanning trees.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.