Abstract
In this paper, we propose a new hierarchical Archimedean copula construction based on multivariate compound distributions. This new imbrication technique is derived via the construction of a multivariate exponential mixture distribution through compounding. The absence of nesting and marginal conditions, contrarily to the nested Archimedean copulas approach, leads to major advantages, such as a flexible range of possible combinations in the choice of distributions, the existence of explicit formulas for the distribution of the sum, and computational ease in high dimensions. A balance between flexibility and parsimony is targeted. After presenting the construction technique, properties of the proposed copulas are investigated and illustrative examples are given. A detailed comparison with other construction methodologies of hierarchical Archimedean copulas is provided. Risk aggregation under this newly proposed dependence structure is also examined.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.