Abstract

It has been recognized that recommendation system is a very important and indispensable topic in E-commerce. Many famous E-commerce websites utilize recommendation systems to convert browsers into buyers. The forms of recommendation include suggesting products/services to the customer, providing personalized product/service information, summarizing community opinion, and providing community critiques. Personalized recommendation methods are mainly classified into content-based recommendation approach and collaborative filtering recommendation approach. Both recommendation approaches, however, have their own drawbacks. This study proposes the integrated contextual information as the foundation concept of multidimensional recommendation model, and uses the online analytical processing (OLAP) ability of data warehousing to solve the contradicting problems among hierarchy ratings. The evaluation studies show that by establishing additional customer profiles and using multidimensional analyses to find the key factors affecting customer perceptions, the proposed approach increases the recommendation quality.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.