Abstract

Aiming for total nitrogen (TN) pollution control in the urbanized stream, this study proposed and verified a strategy of cultivating and acclimating sulfur-based autotrophic denitrifiers by using river-bottom sediments as seed sludge, and investigated temperature effects on sulfur-based autotrophic denitrification (SAD). With thiosulfate as an electron donor, seven SAD batch reactors were operated and studied at both 15 °C and 30 °C, to compare reactor performance and their microbial community analysis results. In the first batch, three parallel reactors (A1, A2, and A3) were operated at 30 °C for 30 days. The dynamic analysis showed that sequentially decreasing temperature to 20, 15, and 10 °C had significant adverse effects on nitrate-loading rates. In the second batch, two groups of parallel reactors were operated at 30 °C (B1 and B2) and 15 °C (C1 and C2) for 45 days. High TN removal efficiencies (>95%) were achieved in all four reactors, with comparable nitrate loading rates and less nitrite accumulation at 15 °C. High-throughput sequencing revealed that genus Thiobacillus was predominant (66.3–90.0%) in all seven reactors. However, at the operational taxonomic unit level, microbial communities at 15 °C and 30 °C were significantly different, indicating that dissimilar strains were cultivated. Our findings suggested that deliberately cultivating cold-adapted denitrifiers helps SAD to achieve high TN removal at psychrophilic temperatures and thus, is important for future applications in practical TN pollution control in urbanized streams.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call