Abstract

The development of high-efficient and cost-effective electrocatalysts is crucial to remove nitrate pollutant in wastewater. Herein, we design and prepare mesoporous Co-doped Cu2(OH)2CO3 malachite nanosheets as an electrocatalyst toward highly efficient nitrate reduction using a facile CO2 bubble-assisted coprecipitation synthesis. The electrocatalytic performance is subject to the Co/Cu ratio of this malachite. Remarkably, compared with the pristine monometal Cu or Co-based electrocatalyst, the optimal electrocatalyst, 0.3Co@Cu2(OH)2CO3, displays fast and highly efficient removal capacity of nitrate with an impressive high total nitrogen (TN) removal of 8628.99 mg N g−1CoCu (398.79 mg N gcat−1 h−1), N2 selectivity of 97.11% as well as negligible nitrite product at 100 mg L−1 NO3--N and 2000 mg L−1 Cl- neutral electrolyte. Above all, high total nitrogen removal efficiency (81.92%) and chemical oxygen demand (73.74%) in actual wastewater. Its excellent electrocatalytic performance is achieved by regulating the electronic structure and the adsorption/desorption of the intermediate. This study discovers a new type of electrode materials for nitrate removal in wastewater.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call