Abstract

This work describes a method in which the digital image correlation (DIC) method and finite element analysis (FEA) were used to create a quasi-static mixed-mode fracture envelope for bonded joints consisting of 2024-T3 Al adherends and a tough structural epoxy adhesive. Symmetric and asymmetric versions of double cantilever beam, single-leg bend, and end-notched flexure tests are used to populate the mixed-mode fracture envelope with results at several mode mixities. Experiments are conducted in a universal testing machine while recording images for subsequent DIC analysis. Finite element analysis is used to implement cohesive zone models (CZMs) of the adhesive fracture and to account for plastic deformation of adherends. Mode I and mode II traction separation laws (TSLs) are determined from a property identification method with a Benzeggagh–Kenane mixed-mode coupling law used to model mixed-mode behavior. FEA results are shown to provide a good agreement to both the crosshead displacement and DIC data. The methods in this paper serve as a potential framework for future calibration of mixed-mode fracture envelopes for joints bonded with very tough adhesives that complicate assessment with traditional data analysis methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call