Abstract

Peroxisomes are essential organelles that house a wide array of metabolic reactions important for plant growth and development. However, our knowledge regarding the role of peroxisomal proteins in various biological processes, including plant stress response, is still incomplete. Recent proteomic studies of plant peroxisomes significantly increased the number of known peroxisomal proteins and greatly facilitated the study of peroxisomes at the systems level. The objectives of this study were to determine whether genes that encode peroxisomal proteins with related functions are co-expressed in Arabidopsis and identify peroxisomal proteins involved in stress response using in silico analysis and mutant screens. Using microarray data from online databases, we performed hierarchical clustering analysis to generate a comprehensive view of transcript level changes for Arabidopsis peroxisomal genes during development and under abiotic and biotic stress conditions. Many genes involved in the same metabolic pathways exhibited co-expression, some genes known to be involved in stress response are regulated by the corresponding stress conditions, and function of some peroxisomal proteins could be predicted based on their co-expression pattern. Since drought caused expression changes to the highest number of genes that encode peroxisomal proteins, we subjected a subset of Arabidopsis peroxisomal mutants to a drought stress assay. Mutants of the LON2 protease and the photorespiratory enzyme hydroxypyruvate reductase 1 (HPR1) showed enhanced susceptibility to drought, suggesting the involvement of peroxisomal quality control and photorespiration in drought resistance. Our study provided a global view of how genes that encode peroxisomal proteins respond to developmental and environmental cues and began to reveal additional peroxisomal proteins involved in stress response, thus opening up new avenues to investigate the role of peroxisomes in plant adaptation to environmental stresses.

Highlights

  • Peroxisomes are small and single membrane-delimited organelles that house numerous oxidative reactions connected to metabolism and development

  • Microarray datasets containing expression data of Arabidopsis peroxisomal genes from various tissues at different developmental stages were obtained from the AtGenExpress database, and expression data under biotic and abiotic stresses were downloaded from NCBI Gene Expression Omnibus (GEO) database (Table A in S1 File)

  • Microarray datasets containing expression data of Arabidopsis peroxisomal genes from various tissues at different developmental stages and under biotic and abiotic stresses were downloaded from the AtGenExpress database and NCBI Gene Expression Omnibus (GEO) database, respectively (Table A in S1 File)

Read more

Summary

Introduction

Peroxisomes are small and single membrane-delimited organelles that house numerous oxidative reactions connected to metabolism and development. These organelles are dynamic in nature, as their abundance, morphology and protein composition can be remodeled in response to developmental and environmental cues to adapt to the need of the organism [1,2,3]. Evidence from melon, Arabidopsis and tobacco suggested the involvement of several peroxisomal photorespiratory enzymes, e.g., hydroxypyruvate reductase (HPR), serine:glyoxylate aminotransferase (SGT), alanine: glyoxylate aminotransferase (AGT), and glycolate oxidase (GOX) in immune response, possibly through ROS production [10,11,12]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call