Abstract

BackgroundForest resources supply a wide range of environmental services like mitigation of increasing levels of atmospheric carbon dioxide (CO2). As climate is changing, forest managers have added pressure to obtain forest resources by following stand management alternatives that are biologically sustainable and economically profitable. The goal of this study is to project the effect of typical forest management actions on forest C levels, given a changing climate, in the Moscow Mountain area of north-central Idaho, USA. Harvest and prescribed fire management treatments followed by plantings of one of four regionally important commercial tree species were simulated, using the climate-sensitive version of the Forest Vegetation Simulator, to estimate the biomass of four different planted species and their C sequestration response to three climate change scenarios.ResultsResults show that anticipated climate change induces a substantial decrease in C sequestration potential regardless of which of the four tree species tested are planted. It was also found that Pinus monticola has the highest capacity to sequester C by 2110, followed by Pinus ponderosa, then Pseudotsuga menziesii, and lastly Larix occidentalis.ConclusionsVariability in the growth responses to climate change exhibited by the four planted species considered in this study points to the importance to forest managers of considering how well adapted seedlings may be to predicted climate change, before the seedlings are planted, and particularly if maximizing C sequestration is the management goal.

Highlights

  • Forest resources supply a wide range of environmental services like mitigation of increasing levels of atmospheric carbon dioxide (CO2)

  • C sequestration is invariably lower under all three climate change scenarios compared to the no climate change control

  • Variability in the growth responses to climate change exhibited by the four planted species considered in this study points to the importance to forest managers of considering how well adapted seedlings may be to predicted climate change, before the seedlings are planted

Read more

Summary

Introduction

Forest resources supply a wide range of environmental services like mitigation of increasing levels of atmospheric carbon dioxide (CO2). Evolution of new plant associations [4], shifts in the spatial distribution in tree species [5], redistribution of populations to local climates [6], Ecosystem process-based models take the approach of simulating underlying biogeochemical processes, such as photosynthesis and respiration, using mathematical equations that determine the allocation of C from atmospheric CO2 into biomass. These models require parameterization for vegetation type, climate, and site conditions that constrain net primary productivity and ecosystem C balance.

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call