Abstract

A comparison of two multi-way methodologies is presented regarding the simultaneous quantitation of several analytes in complex samples. Both protocols are based on liquid chromatography with fluorescence detection, in the following modes: (1) collecting second-order/three-way data by fluorescence emission detection at a fixed excitation wavelength, and (2) measuring third-order/four-way data through excitation-emission fluorescence matrix detection. Ten quinolone antibiotics were simultaneously analyzed in edible animal tissues such as chicken liver and bovine liver and kidney. Multivariate curve resolution - alternating least-squares (MCR-ALS) provided excellent results with the second-order strategy, with average relative prediction errors in the range 4–12% for real samples, at analyte concentrations which are compatible with the corresponding maximum residue levels. For third-order data, however, the overall MCR-ALS analytical results were worse than for second-order data (relative errors were in the range 9–23%), and one analyte was not resolved. As an alternative, unfolded partial least-squares with residual bi- and trilinearization (U-PLS/RBL and U-PLS/RTL) were applied to both second- and third-order data, with relative errors of 7–18% and 5–27% respectively. The latter errors were significantly larger than those for MCR-ALS/second-order data, although the U-PLS/RTL model permitted the detection of all analytes when processing the third-order data. Relative advantages and disadvantages of the applied procedures are discussed on the basis of the analytical performances and the specific details of the instrumental setups.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.