Abstract
This paper offers a critical review from classical to new perspectives of advanced oxidation processes (AOPs) coupled to two- and multi-way calibration strategies based on multivariate curve resolution – alternating least-squares (MCR-ALS) and parallel factory analysis (PARAFAC) with various analytical techniques to monitor the degradation of contaminants in environmental samples. It focuses on the generation of highly reactive hydroxyl (HO•) radicals (classical AOPs with emphasis on Fenton, photo-Fenton and ozonation processes) and emerging reactive sulphate (SO4•−) radicals (new perspectives of AOPs) for effective degradation of recalcitrant compounds. Other new perspectives of AOPs were also addressed, namely semiconductor photocatalysis (TiO2/UV), combination of processes involving at least one AOP (hybrid or single-step processes and sequential or two-step processes), novel advanced electrochemical oxidation technologies (electro-Fenton and electro-photo-Fenton) and nanocatalytic heterogeneous Fenton technology with high specific surface area. Literature reports since 2008 for real applications in the environmental remediation based on AOPs (from classical to new perspectives) coupled to PARAFAC and MCR-ALS with first-, second- and third-order data were reviewed and the improvements obtained were briefly discussed. The two- and multi-way calibration strategies allow one the successful decomposition of first-, second- and third-order data collected from different analytical techniques. Therefore, the respective profiles obtained allowed qualitative (spectral profiles) and quantitative (concentration profiles) analysis of complex samples during the degradation of contaminants through the second-order advantage. Finally, trends of future research directions for AOPs coupled to various analytical techniques and advanced chemometric models were provided.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.